RADCON® FORMULA#7

DESIGN DETAILING for Concrete Waterproofing

Design Detailing – Contents

NOTE: Click on item to go to that page

R1	Rooftop -	 Exposed
----	-----------	-----------------------------

- R2 Rooftop Insulated
- R3 Rooftop Carpark
- R4 Rooftop Landscaped
- **RD1** Rooftop Details Construction Joints
- **RD2** Rooftop Details Expansion Joints
- **RD3** Rooftop Details Penetrations
- RD4 Rooftop Details Contraction Joints, Pour Strips and Plinths & Hobs
- P1 Parking Structure
- PD1 Parking Structure Details Construction Joints, Expansion Joints and Kerbs & Hobs
- PD2 Parking Structure Details Penetrations, Pour Strips and Contraction Joints
- **B1** Bridge Elevated Road and Rail
- **T1** Tunnel Cut-and-Cover
- W1 Water Holding Vessel Suspended Swimming Pool
- W2 Water Holding Vessel Elevated Water Tank
- WD1 Water Holding Vessel Details Construction Joints
- WD2 Water Holding Vessel Details Penetrations
- WD3 Water Holding Vessel Details Contraction Joints and Miscellaneous

R Rooftop - Exposed

TYPICAL SECTION EXPOSED ROOFTOP

R2 Rooftop - Insulated

TYPICAL SECTION INSULATED ROOFTOP

R3 Rooftop - Carpark

TYPICAL SECTION ROOFTOP CARPARK

R4 Rooftop – Landscaped

TYPICAL SECTION ROOFTOP LANDSCAPING

RD | Rooftop Details

CONSTRUCTION JOINTS

- Formed between adjacent concrete pours
- Aim is to produce a well-bonded, watertight joint between the hardened concrete and the freshlyplaced concrete so it acts monolithically
- Generally all the reinforcement should continue across the joint
- A temporary stop-board should be used to form the face of the joint and should be subsequently roughened before placing the adjacent pour

DETAIL RPJ1 CONSTRUCTION JOINT

DETAIL RPJ2 CONSTRUCTION JOINT

DETAIL RPJ3 CONSTRUCTION JOINT

NOTES ON APPLICATIONS

- RPJ1 Standard construction joint with good watertightness. Suitable for most rooftop and carpark applications
- **RPJ2** As per RPJ1, but used when extra watertightness is required
- RPJ3 Unplanned construction joint detail. Suitable for general rooftops but not high-traffic areas, such as car parks
- RPJ4 Cast in-situ hob raising construction joint above waterproofing level. Used at parapets, stairwells, plant rooms or similar
- RPJ5 Horizontal construction joint where no in-situ hob is provided. Used to simplify edge formwork
- **RPJ6** As per RPJ5, as well as for unplanned construction joints

DETAIL RPJ4 CONSTRUCTION JOINT

DETAIL RPJ5 CONSTRUCTION JOINT

DETAIL RPJ6 CONSTRUCTION JOINT

RD2 Rooftop Details

EXPANSION JOINTS

- Used to divide a structure into separate independent units
- Aim is to allow for relative movements between units due to expansion, contraction, differential foundation settlements or applied loads
- Expansion joints should allow relative movement in all directions and are usually formed using filler strips of the required thickness between abutting cast-insitu concrete elements

NOTES ON APPLICATIONS

- **REJ1** Simple expansion joint for non-trafficable areas such as exposed rooftons and insulated rooftons
- **REJ2** More thorough expansion joint than REJ1. For rooftops subject to maintenance traffic only. Hobs must be cast in-situ
- **REJ3** Expansion joint suitable for rooftop carparks
- REJ4 Same as REJ3
- **REJ5** Simple expansion joint for low-risk situations
- **REJ6** Simple expansion joint for insulated rooftops

DETAIL REJ1 EXPANSION JOINT

DETAIL REJ3 EXPANSION JOINT

DETAIL REJ5 EXPANSION JOINT

DETAIL REJ2 EXPANSION JOINT

DETAIL REJ4 FXPANSION JOINT

DETAIL REJ6 EXPANSION JOINT

RD3 Rooftop Details

PENETRATIONS

- Penetrations are required where services pass through slabs
- Aim is to ensure a waterproof joint is achieved between the slab and the penetration
- Penetrations are usually cast in-situ, or added later through cored holes

NOTES ON APPLICATIONS

- **RP1** Standard treatment of cast in-situ penetrations to rooftops
- **RP2** Cast in-situ fulgo outlet penetration with options
- **RP3** Same as RP2. Suitable for trafficable environment
- **RP4** Treatment for smaller-diameter penetrations previously cast-in
- **RP5** Treatment of larger-diameter penetrations previously cast-in, as well as those requiring a higher level of waterproofing protection
- **RP6** Treatment of penetrations added after the concrete pour, through cored holes

DETAIL RP1 PENETRATION

* Generally one or the other is sufficient. For extra watertightness, both may be used

DETAIL RP2 PENETRATION

* Generally one or the other is sufficient. For extra watertightness, both may be used

DETAIL RP3 PENETRATION

DETAIL RP4 PENETRATION

DETAIL RP5 PENETRATION

DETAIL RP6 PENETRATION

RD4 Rooftop Details

CONTRACTION JOINTS

- Purpose-made plane of weakness in a concrete section
- Aim is to ensure that cracking due to shrinkage and temperature contraction will occur along predetermined lines
- Generally reinforcement should not continue across the joint. For shear transfer across the joint, dowels may be used with one half coated to prevent bond

POUR STRIPS

- 'Pour strips' are temporary gaps which are left open for a certain time to allow the concrete on each side to shrink, thus minimising induced tensile stresses
- Aim is to produce a watertight, homogeneous infill with full structural continuity
- The main reinforcement should be overlapped in the region of the pour strip which is tvoically one metre wide

PLINTHS AND HOBS

- Plinths and hobs are normally added later to act as plant and equipment supports, or traffic devices in carparks
- Dowels used to tie plinths and hobs to the structural slab must be set in place with suitable epoxy adhesive. Radcon #7 treatment should be applied to drilled dowel holes before epoxy grouting

DETAIL RCJ1 CONTRACTION JOINT

DETAIL RPS1 POUR STRIP

DETAIL RM1 ADDITIONS TO STRUCTURAL SLABS

P | Parking Structure

TYPICAL SECTION PARKING STRUCTURE

PD1 Parking Structure Details

CONSTRUCTION JOINTS

- Formed between adjacent concrete pours
- Aim is to produce a well-bonded, watertight joint between the hardened concrete and the freshlyplaced concrete so it acts monolithically
- Generally all the reinforcement should continue across the joint
- A temporary stop-board should be used to form the face of the joint and should be subsequently roughened before placing the adjacent pour

DETAIL PPJ1 CONSTRUCTION JOINT

DETAIL PPJ2 CONSTRUCTION JOINT

DETAIL PPJ3 CONSTRUCTION JOINT

EXPANSION JOINTS

- Used to divide a structure into separate independent units
- Aim is to allow for relative movements between units due to expansion, contraction, differential foundation settlements or applied loads
- Expansion joints should allow relative movement in all directions and are usually formed using filler strips of the required thickness between abutting cast-insitu concrete elements

Formed steel plate, fixed one side, with retaining bolts through slotted holes on other side to concrete Radcon #7 treatment Sealant with backing rod

DETAIL PEJ1 EXPANSION JOINT

DETAIL PEJ2 EXPANSION JOINT

DETAIL PEJ3 EXPANSION JOINT

KERBS AND HOBS

 Kerbs and hobs are usually added to the structural slab later, to which they are anchored by cast-in ties

PD2 Parking Structure Details

PENETRATIONS

- Penetrations are required where services pass through slabs
- Aim is to ensure a waterproof joint is achieved between the slab and the penetration
- Penetrations are usually cast in-situ with suitable waterproofing details or added later through cored holes (see Detail RP6 on Roof Detail Sheet RD3)

POUR STRIPS

- 'Pour strips' are temporary gaps which are left open for a certain time to allow the concrete on each side to shrink, thus minimising induced tensile stresses
- Aim is to produce a watertight, homogeneous infill with full structural continuity
- The main reinforcement should be overlapped in the region of the pour strip which is typically one metre wide

DETAIL PPS1 POUR STRIP

CONTRACTION JOINTS

- Purpose-made plane of weakness in a concrete section
- Aim is to ensure that cracking due to shrinkage and temperature contraction will occur along predetermined lines
- Generally reinforcement should not continue across the joint.
 For shear transfer across the joint, dowels may be used with one half coated to prevent bond

DETAIL PCJ1 CONTRACTION JOINT

B | Bridge - Elevated Road and Rail

TYPICAL SECTION ROADWAY BRIDGE

TYPICAL SECTION RAILWAY BRIDGE

NOTE: Radcon #7 does not affect slip resistance of concrete surface

DETAIL BD1 DECK EXPOSED

NOTE: Radcon #7 does not affect bond between concrete and wearing surface

DETAIL BD2 DECK WITH WEARING SURFACE

DETAIL BM1 UPSTANDS CAST LATER

DETAIL BM2 BALLAST OVERLAY

Tonnel – Cut-and-Cover

TYPICAL SECTION ROADWAY TUNNEL

DETAIL TPJ1 CONSTRUCTION JOINT

DETAIL TPJ2 CONSTRUCTION JOINT

TYPICAL SECTION RAILWAY TUNNEL

DETAIL TCJ1 CONTRACTION JOINT

Water Holding Vessel – Suspended Swimming Pool

DETAIL WPJ1 CONSTRUCTION JOINT

Radcon #7 treatment

Ceramic tile finish

Swelling waterstop

DETAIL WP1 PENETRATION

W2 Water Holding Vessel – Elevated Water Tank

TYPICAL SECTION ELEVATED WATER TOWER

TYPICAL SECTION ELEVATED SPRINKLER TANK

WD | Water Holding Vessel Details

CONSTRUCTION JOINTS

- Formed between adjacent concrete pours
- Aim is to produce a well-bonded, watertight joint between the hardened concrete and the freshlyplaced concrete so it acts monolithically
- Generally all the reinforcement should continue across the joint
- A temporary stop-board should be used to form the face of the joint and should be subsequently roughened before placing the adjacent pour

NOTES ON APPLICATIONS

- **WPJ1** Construction joint suitable for surrounding pavements of a suspended swimming pool
- **WPJ2** Standard construction joint for swimming pools
- **WPJ3** Alternative construction joint for swimming pools, as well as for unplanned joints
- WPJ4 Heavy-duty construction joint suitable for large water-retaining structures
- **WPJ5** Construction joint where extra protection required, such as rooftop sprinkler tanks, etc

DETAIL WPJ1 CONSTRUCTION JOINT

DETAIL WPJ2 CONSTRUCTION JOINT

DETAIL WPJ3 CONSTRUCTION JOINT

DETAIL WPJ4 CONSTRUCTION JOINT

DETAIL WPJ5 CONSTRUCTION JOINT

WD2 Water Holding Vessel Details

Reinforced

Inlet pipe

or similar

Radcon #7

treatment

Ceramic

tile finish

liquid membrane

PENETRATIONS

- Penetrations are required where services pass through structural concrete
- Aim is to ensure a waterproof joint is achieved between the concrete and the penetration
- Penetrations are usually cast in-situ with suitable waterproofing details

NOTES ON APPLICATIONS

- WP1 Standard outlet pipe detail for pools and other water-holding vessels
- **WP2** Inlet pipe, overflow pipe or similar, for pools and other water-holding vessels
- **WP3** Alternative to WP2, where no waterstop utilised
- **WP4** Heavy-duty inlet pipe where differential movements are possible, such as large water-retaining structures
- **WP5** Heavy-duty outlet pipe where differential movements are possible, such as large water-retaining structures

DETAIL WP1 PENETRATION

DETAIL WP2 PENETRATION

DETAIL WP4 PENETRATION

DETAIL WP5 PENETRATION

WD3 Water Holding Vessel Details

CONTRACTION JOINTS

- Purpose-made plane of weakness in a concrete section
- Aim is to ensure that cracking due to shrinkage and temperature contraction will occur along predetermined lines
- Generally reinforcement should not continue across the joint.
 For shear transfer across the joint, dowels may be used with one half coated to prevent bond

DETAIL WCJ1 CONTRACTION JOINT

MISCELLANEOUS

DETAIL WM2 HONEY-COMBING TREATMENT